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Melting of hard cubes

E. A. Jagla*
Centro Atómico Bariloche, Comisio´n Nacional de Energı´a Atómica, 8400 San Carlos de Bariloche, Rı´o Negro, Argentina

~Received 23 March 1998!

The melting transition of a system of hard cubes is studied numerically both in the case of freely rotating
cubes and when there is a fixed orientation of the particles: parallel cubes. It is shown that freely rotating cubes
melt through a first-order transition, whereas parallel cubes have a continuous transition in which positional
order is lost but bond-orientational order remains finite. This is interpreted in terms of a defect-mediated theory
of melting. @S1063-651X~98!04010-0#

PACS number~s!: 05.70.Fh, 64.60.Cn, 64.10.1h
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I. INTRODUCTION

Freezing is probably the most unavoidable phase tra
tion of a classical system of identical particles, occurri
when temperature is reduced sufficiently. The most imp
tant difference between the low-temperature~solid! phase
and the high-temperature~fluid! phase is that in the solid
phase long-range correlations between the coordinate
particles exist, whereas in the fluid phase this correlatio
short ranged, decaying exponentially with distance. Freez
~or melting! is, for three-dimensional systems, a first-ord
transition, with discontinuities in the first derivatives of the
modynamic potentials at the transition point. Compared
the liquid-gas transition or magnetic transitions in model s
tems, the advance in the theoretical understanding of
melting transition has been considerably slow.

Historically, there have been two main theoretical a
proaches to the problem of melting. Perturbative argume
@1# starting from the solid phase are able to predict that
solid structure will be unstable when temperature is
creased sufficiently, but cannot automatically predict
characteristics of the fluid phase. Descriptions starting fr
the fluid phase~virial expansions, Ornstein-Zernicke equ
tions, etc.!, although giving very accurate descriptions of t
fluid phase in some model systems, usually do not predic
all a transition to a solid phase. The most successful acc
of the melting transition arising from this line of thinking
an order parameter theory of melting@2# in which the most
stable structure at a given temperature is obtained by m
mizing a free energy functional that depends on the inten
of the Bragg peaks of the structure. These intensities are
in the fluid phase and finite in the solid phase.

A more recent approach to the problem is the theory
defect-mediated melting transition originally proposed
two-dimensional~2D! systems. The original idea is the fo
lowing @3,4#. The melting from the solid to the fluid phase
a consequence of the proliferation of defects in the per
crystalline structure that exists at zero temperature. Th
defects, called dislocations, appear in defect-antidefect p
and have a finite binding energy. As long as the size of
pair is finite, the positional order of the system is only p
turbed at small length scales. When temperature is incre
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beyond a critical valueTm , the size of the pair become
infinite or, in other words, free dislocations can exist in th
mal equilibrium in the system. The existence of free dislo
tions disrupts the long-range positional order of the syst
and drives the melting transition of the crystal. The transit
is predicted to be continuous, of Kosterlitz-Thouless ty
@4#. It was further realized that a crystal with a finite conce
tration of free dislocations does not behave exactly as a u
fluid. In fact, dislocations destroy the positional order
crystals, but not the orientational order that can still
present. In this scenario, the state of the system forT.Tm
corresponds to a fluid with orientational order, known as
hexatic phase@5#. Within the hexatic phase a new kind o
defect appears that destroys the orientational order at
enough temperatures. These defects were called disclina
by Halperin and Nelson. At a certain temperatureT0 discli-
nation pairs unbind and the system transforms in a us
fluid through a new Kosterlitz-Thouless transition. The cri
cal valuesT0 andTm depend on the self-energies and inte
action energies of dislocations and disclinations, which
turn are dependent on the parameters of the model. It sh
be noted that a necessary condition for this two-step mel
process is thatT0.Tm since orientational order can exist i
the absence of positional order, but positional order can
exist in the absence of orientational order. If the coupli
between dislocations and disclinations is strong, the two c
tinuous transitions can merge into a single first-order tran
tion @6,7#. Much theoretical and experimental work has be
devoted since then to the confirmation of this theory of tw
dimensional melting@which is known as the Kosterlitz
Thouless-Halperin-Nelson-Young~KTHNY ! theory# and it
was found in fact that the melting transition in two dime
sions may be a single first-order@8# or a two-step continuous
transition@9# depending on the system studied.

Due to its usefulness in 2D systems, it is tempting
apply the defect-mediated theory of melting to 3D syste
@6#. In three dimensions, dislocations are one-dimensio
defects that form closed loops or open lines that begin
end at the surfaces of the sample. In a 3D solid at low te
peratures only small dislocation loops exist, but beyond
critical temperature infinitely large loops are present at eq
librium and the solid loses its positional long-range ord
This picture of the transition is closely related to th
superconducting-normal transition driven by the proliferati
of vortex loops in superconductors@10# or the superfluid-
4701 © 1998 The American Physical Society
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4702 PRE 58E. A. JAGLA
normal liquid transition in He4 @11#. Again, the transition
driven by dislocations alone is continuous and the fl
above melting still has orientational long-range order t
generates a residual resistance to torsion, not present
normal fluid@12#. In analogy to the situation for 2D system
a different class of defects responsible for the disappeara
of orientational order must be introduced and another tra
tion at higher temperatures should be expected.

From this point of view, the striking feature of the meltin
of identical particles in three dimensions is that it is alway
first-order transition. This may indicate that the disclinatio
unbinding and dislocation-unbinding transitions in three
mensions are strongly coupled in such a way that they p
mote each other and make the transition first order, but w
this is always so is not known. The existence of a mo
system that melts through a continuous transition into a fl
with orientational order would be of importance in givin
insight into the KTHNY theory in three dimensions.

The aim of this work is to analyze numerically a simp
model that displays a continuous melting transition in th
dimensions. The model is a system of impenetrable cu
which have fixed orientation in space, the same for all cu
@parallel hard cubes~PHCs!# @13#. Kirkpatrick @14# showed
that this model has a continuous transition to a simple hyp
cubic solid structure in infinite dimensions and sugges
that this would also be so in three dimensions. The two m
reasons to expect a continuous melting for PHCs are
following. First, a cubic crystal lacks, in a Landau descr
tion of its melting, a third-order term in the free energy fun
tional that would favor the transition to be first order@15#.
This kind of term appears for crystalline structures that p
sess three Bragg vectorsG1

W , G2
W , G3

W lying on the first
maximum of the diffraction pattern and satisfying the re
tion G1

W1G2
W1G3

W50. These vectors do not exist for
simple cubic structure. In addition, bond-orientational ord
@16# will be strongly enhanced in PHCs compared, for
stance, to spheres because a fixed orientation of each
favors a neighborhood in which cubes arrange with the sa
orientation. This raises the possibility for the orientation
order to persist up to higher temperatures than the tran
tional order. For comparison, the case of freely rotating h
cubes~FRHCs! will also be studied and it will be shown tha
in this case the melting is a usual first-order transition into
isotropic fluid.

II. NUMERICAL TECHNIQUE AND RESULTS

The numerical method used to simulate the system
standard Monte Carlo Metropolis algorithm in theNPT en-
semble. The positions of the cubes are characterized by
coordinates of their centers. A trial movement of a parti
consists of a displacement to a new position chosen
domly inside a cube of linear size 0.01l centered at the old
position (l is the linear size of the particles!. The new posi-
tion of the particle is accepted as long as there is no ove
with any other particle. After all particle coordinates are u
dated a trial global rescaling of all particle coordinates a
system size by a factor within the range 160.01 is proposed
If this change does not produce particle overlapping, the
is accepted according to the Metropolis algorithm with
energy changedE given bydE5PDV2NkBTDV/V (N is
t
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the total number of cubes,P is pressure, andV is the volume
of the system!. In the case of FRHCs, in addition to th
center-of-particle coordinates, three Euler angles are ne
sary to characterize the position of each cube. These an
are updated at the same time as coordinates; the elem
change in each step is chosen to be;0.1. Since there is no
configurational contribution to the energy of the system,
equation of state depends only on the relationT/P. All re-
sults are presented as a function of the adimensional t
peratureT* [kBv0

21(T/P) ~which will be referred to simply
as the temperature!, wherev05 l 3 is the volume of each cube
@17#.

The zero-temperature state of the system of cubes~both
parallel and freely rotating! is highly degenerate becaus
along any of the main crystalline directions, rows of cub
can be displaced an arbitrary amount without changing
volume of the system. However, at finite temperatures
cubic configuration with long-range positional order h
larger entropy than any row-displaced configuration and
thermodynamically stable state is a simple cubic lattice@18#.
Even for the small systems that we are going to simulate,
entropy is greater than the one that can be gained by disp
ing rows of cubes@which is of the order of ln(N)/N] and
configurations with displaced rows never show up in t
simulations in the temperature ranges of interest.

When temperature is increased sufficiently the crys
melts. This melting is qualitatively different for PHCs an
FRHCs. In the case of FRHCs the melting occurs via a st
dard first order transition. The results of simulations are p
sented for a system of 125 particles. The system was ini
ized in a perfect cubic structure at low temperature an
simulation was performed by increasing and then decrea
temperature. At each temperature 5000 Monte Carlo s
were used for thermalization and then 20 000 steps w
used to compute the quantities of interest. In Fig. 1~a! we see
the evolution of the inverse packing fractionv[V/(Nv0) of

FIG. 1. ~a! Inverse packing fractionv and ~b! Bragg intensities
Bc ~full symbols! and nearest-neighbor orientational orderB2 ~open
symbols! as a function of the adimensional temperatureT* for a
system of 53535 FRHCs, upon heating~starting from an ordered
configuration! and cooling~see the text for definitions;B2 and Bc

are given in arbitrary units!. In ~a! the dotted line is the prediction
from a cell theory of the solid and the dashed line is the behavio
hard spheres with an effective volume of 1.2v0 in the fluid phase.
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PRE 58 4703MELTING OF HARD CUBES
the system. It shows a clear hysteretic behavior, indicatin
first-order phase transition forT* ;0.15, where density
changes between;0.45 and;0.52. Also shown in this fig-
ure as a dotted line are the values predicted from a
theory for the solid@1#, which gives a reasonable approxim
tion to the real equation of state up to the melting tempe
ture. It would be nice to have the expressions for the vi
coefficients of FRHCs to fit the fluid part of the curve, b
these are not available to the required order to get a g
fitting. For comparison, in Fig. 1 the Carnahan-Starling eq
tion of state of hard spheres@1# is shown. The only free
parameter is the sphere volume that was chosen to be 1.v0 .

In Fig. 1~b! two different indicators of the order in th
system support the conclusion that the melting transition
FRHCs is first order. The parameterBc is extracted from the
diffraction pattern of the structure and it is defined as

Bc5 (
m524

4 U E D~k,u,w!Y4,m~u,w!

3d~k2k1!k2dk sin~u!du dwU2

, ~1!

whereD(k,u,w) is the intensity of the diffraction pattern i
polar coordinates, thed factor picks up the values at the fir
maximum of the diffraction pattern (k152pv1/3), and the
spherical harmonicsY4,m collect the part with cubic symme
try of the diffraction pattern. The value ofBc is different
from zero if the system possesses long-range positional o
@19#.

The relative ordering of neighbor particlesB2 is defined
as

B25 (
m524

4 U E D2~r ,u,w!K~r !

3Y4,m~u,w!r 2dr sin~u!du dwU2

, ~2!

with D2(r ,u,w) being the pair distribution function of par
ticles at distancer , along the spatial direction (u,w). The
kernelK(r ) cuts off the integral beyond some distance. T
results are qualitatively insensitive to the exact form
K(r ); in the results presented belowK(r ) was taken to be 1
for r ,1.5v1/3 and 0 forr .1.5v1/3. The value ofB2 is dif-
ferent from zero if the system possesses long-range orie
tional order.

All these indicators of ordering vanish at the melting tra
sition, with the same hysteretic behavior as that of the v
ume. The unambiguous determination of a first-order ph
transition would require the study of the volume histogram
the transition temperature, which should have a double p
structure associated with the coexistence of a solid an
fluid phase. Unfortunately, the simulation of FRHCs is ve
time consuming so as to carry out this program. Par
checks were performed however. In a simulation around
transition temperature (T* 50.15) the volume of the system
stabilized around different values, depending on whether
initial configuration of the system was chosen to be rand
or ordered. These values were the ones expected from
a
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1~a!. Partial simulations in systems up to 512 particles w
performed and the results are consistent with a first-or
melting transition for FRHCs.

If the cubes are restricted to be parallel to each other,
nature of the melting transition changes qualitatively. Res
of simulations for this case are shown in Fig. 2 for a syst
of 216 particles. The volume of the system does not sh
any abrupt change, but a continuous and reversible~on heat-
ing and cooling! behavior. The parameter characterizing t
crystalline orderBc diminishes strongly aroundT* 50.4,
where the system has a density;0.5, suggesting a continu
ous melting. The local orientational order~characterized by
B2), in spite of decreasing near the transition, remains fin
at high temperatures. This characteristic is not surpris
since the orientational order is favored by the equal orien
tion of all cubes. In Fig. 2 we can see also the predictions
the volume from the lowest-order cell model of the solid a
the seventh-order virial expansion for the fluid@20#. These
expressions give a good approximation to the simulated
ues for all temperatures.

If the melting of PHCs is really a second-order pha
transition, the behavior of the order parameter of the tran
tion ~which can be taken to be the crystalline order parame
Bc) must obey scaling laws as a function of the system s
In particular, different simulations ofBc in systems of dif-
ferent sizesL ([V1/3/ l ) must obey a scaling relation of th
form @21#

Bc5L2m f „~T* 2Tm* !L1/n
…, ~3!

where f is a universal function,n and m are two critical
exponents, andTm* is the thermodynamical melting temper
ture. The exponentn characterizes the divergence at the th
modynamic melting temperatureTm* of the correlation
length. The result of simulations for systems of 216, 512, a
1000 particles are shown in Fig. 3. The volume and the
entational orderB2 show no detectable dependence on si
whereas the crystalline orderBc has a clear size dependenc
Results forBc for different system sizes can be collaps
reasonably well onto a single curve when plotted asBcL

m vs

FIG. 2. Same as Fig. 1 for a system of 63636 PHCs. In~a! the
dotted line is the prediction from a cell theory of the solid and t
dashed line is the equation of state for PHC to seventh order v
expansion.
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4704 PRE 58E. A. JAGLA
(T* 2Tm* )L1/n, with the parametersTm* 50.4060.02, m
54.060.5, andn50.5060.05. This value ofn is lower than
the one corresponding to a three-dimensionalXY model or
the loop model for the normal-to-superconducting transit
(n50.66660.003) that is supposed to be in the same u
versality class of our model if the melting can be describ
by the KTHNY theory. However, to be able to unambig
ously decide this point, more simulations in larger syste
are needed. The density of the system at melting is 0
60.02.

The fluid formed by the parallel cubes above melting
not a usual isotropic fluid. This is obvious since some spa
orientations are singled out by the particular form of t

FIG. 3. ~a! Inverse packing fractionv, ~b! orientational order
B2, and ~c! crystalline orderBc as a function of temperature fo
systems of PHCs of different sizes. The values shown correspon
an average upon cooling and heating. In~d! the curves ofBc are
scaled according to a second-order phase transition using the
mensional linear size of the systemL[V1/3/ l .
r

n
i-
d

s
8

al

particles. The fluid phase of PHCs is the analogous of
hexatic phase of the KTHNY theory. Within this framewor
the difference between FRHCs and PHCs is clear: Para
cubes keep the long-range orientational order even when
sitional order has been lost and the KTHNY theory predi
a continuous melting if only positional order is lost. FRHC
have the possibility of losing both positional and orien
tional order and this is in fact what happens at a uniq
temperature in a discontinuous form.

It may be of interest to compare the fluid of PHCs wi
the nematic phase of liquid crystals@22#. In that case, mol-
ecules orient along a preferred spatial direction~i.e., they
possess molecular-orientational order!. Upon cooling, this
structure transforms usually into a smectic-A phase in which
a long-range positional order is established along the di
tion characterizing the nematic phase. This transition may
first or second order depending on the material. At a low
temperature the smectic-A phase can undergo a transition
a crystalline phase. In our case, parallel cubes single
three orthogonal and equivalent directions in space and u
cooling the system freezes into a solid phase, with crystal
order in all directions. The melting of PHCs has no analog
the transitions that occur in liquid crystal systems. Note t
for the case of cubes the oriented phase has to be stabi
from the outside, whereas the nematic phase in liquid cr
tals may be generated by molecular hard core interact
only.

III. CONCLUSION

In summary, I have shown numerical results on a sim
model that displays a continuous melting transition in th
dimension, namely, a system of parallel hard cubes. T
melting of this system can be qualitatively interpreted
terms of the KTHNY theory of defect-mediated melting. Th
melting temperature was estimated to beTm* 50.4060.02
and the critical density is 0.4860.02. The critical exponen
of the correlation length isn50.5060.05. At the melting
transition only positional order is lost; orientational ord
remains finite because it is favored by the geometric form
the particles. If the cubes are allowed to rotate, the meltin
a usual first-order transition where both positional and ori
tational order are lost.
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