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Melting of hard cubes
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The melting transition of a system of hard cubes is studied numerically both in the case of freely rotating
cubes and when there is a fixed orientation of the particles: parallel cubes. It is shown that freely rotating cubes
melt through a first-order transition, whereas parallel cubes have a continuous transition in which positional
order is lost but bond-orientational order remains finite. This is interpreted in terms of a defect-mediated theory
of melting.[S1063-651X98)04010-7

PACS numbg(s): 05.70.Fh, 64.60.Cn, 64.16h

I. INTRODUCTION beyond a critical valueT,,, the size of the pair becomes
infinite or, in other words, free dislocations can exist in ther-
Freezing is probably the most unavoidable phase transimal equilibrium in the system. The existence of free disloca-
tion of a classical system of identical particles, occurringtions disrupts the long-range positional order of the system
when temperature is reduced sufficiently. The most imporand drives the melting transition of the crystal. The transition
tant difference between the low-temperatyselid) phase is predicted to be continuous, of Kosterlitz-Thouless type
and the high-temperaturédluid) phase is that in the solid [4]. It was further realized that a crystal with a finite concen-
phase long-range correlations between the coordinates tfation of free dislocations does not behave exactly as a usual
particles exist, whereas in the fluid phase this correlation iluid. In fact, dislocations destroy the positional order of
short ranged, decaying exponentially with distance. Freezingrystals, but not the orientational order that can still be
(or melting is, for three-dimensional systems, a first-orderpresent. In this scenario, the state of the systenilfafT,
transition, with discontinuities in the first derivatives of ther- corresponds to a fluid with orientational order, known as the
modynamic potentials at the transition point. Compared tdhexatic phasg5]. Within the hexatic phase a new kind of
the liquid-gas transition or magnetic transitions in model sysdefect appears that destroys the orientational order at high
tems, the advance in the theoretical understanding of thenough temperatures. These defects were called disclinations
melting transition has been considerably slow. by Halperin and Nelson. At a certain temperattligediscli-
Historically, there have been two main theoretical ap-nation pairs unbind and the system transforms in a usual
proaches to the problem of melting. Perturbative argumentBuid through a new Kosterlitz-Thouless transition. The criti-
[1] starting from the solid phase are able to predict that theal valuesT, andT,, depend on the self-energies and inter-
solid structure will be unstable when temperature is in-action energies of dislocations and disclinations, which in
creased sufficiently, but cannot automatically predict theturn are dependent on the parameters of the model. It should
characteristics of the fluid phase. Descriptions starting fronbe noted that a necessary condition for this two-step melting
the fluid phase(virial expansions, Ornstein-Zernicke equa- process is thaly>T,, since orientational order can exist in
tions, etc), although giving very accurate descriptions of thethe absence of positional order, but positional order cannot
fluid phase in some model systems, usually do not predict axist in the absence of orientational order. If the coupling
all a transition to a solid phase. The most successful accouietween dislocations and disclinations is strong, the two con-
of the melting transition arising from this line of thinking is tinuous transitions can merge into a single first-order transi-
an order parameter theory of meltifig] in which the most tion [6,7]. Much theoretical and experimental work has been
stable structure at a given temperature is obtained by minidevoted since then to the confirmation of this theory of two-
mizing a free energy functional that depends on the intensitgimensional melting[which is known as the Kosterlitz-
of the Bragg peaks of the structure. These intensities are zefthouless-Halperin-Nelson-Youn@THNY) theory] and it
in the fluid phase and finite in the solid phase. was found in fact that the melting transition in two dimen-
A more recent approach to the problem is the theory okions may be a single first-ordgg] or a two-step continuous
defect-mediated melting transition originally proposed fortransition[9] depending on the system studied.
two-dimensional2D) systems. The original idea is the fol- Due to its usefulness in 2D systems, it is tempting to
lowing [3,4]. The melting from the solid to the fluid phase is apply the defect-mediated theory of melting to 3D systems
a consequence of the proliferation of defects in the perfedi6]. In three dimensions, dislocations are one-dimensional
crystalline structure that exists at zero temperature. Thesgefects that form closed loops or open lines that begin and
defects, called dislocations, appear in defect-antidefect pairsnd at the surfaces of the sample. In a 3D solid at low tem-
and have a finite binding energy. As long as the size of theperatures only small dislocation loops exist, but beyond a
pair is finite, the positional order of the system is only per-critical temperature infinitely large loops are present at equi-
turbed at small length scales. When temperature is increasdiirium and the solid loses its positional long-range order.
This picture of the transition is closely related to the
superconducting-normal transition driven by the proliferation
*Electronic address: jagla@cab.cnea.edu.ar of vortex loops in superconductof40] or the superfluid-
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normal liquid transition in H&[11]. Again, the transition
driven by dislocations alone is continuous and the fluid
above melting still has orientational long-range order that
generates a residual resistance to torsion, not present in a
normal fluid[12]. In analogy to the situation for 2D systems,
a different class of defects responsible for the disappearance
of orientational order must be introduced and another transi-
tion at higher temperatures should be expected.

From this point of view, the striking feature of the melting
of identical particles in three dimensions is that it is always a
first-order transition. This may indicate that the disclination-
unbinding and dislocation-unbinding transitions in three di-
mensions are strongly coupled in such a way that they pro- Bt e & . %
mote each other and make the transition first order, but why 005 010 015 020 025 030
this is always so is not known. The existence of a model T
system that melts through a continuous transition into a fluid

with orientational order would be of importance in giving ol bol q iohb i onal
insight into the KTHNY theory in three dimensions. B, (full symbols and nearest-neighbor orientational or8gr(open
symbolg as a function of the adimensional temperatiite for a

The aim of this work is to analyze numerically a simple . )
model that displays a continuous melting transition in threeStem of 5555 FRHCs, upon heatingstarting from an ordered

dimensions. The model is a system of impenetrable Cubeconfig_;urati_or) an_d cooling(see the text for dgfinit_ionsBz and_B_C

. . . o re given in arbitrary unijsIn (a) the dotted line is the prediction
which have fixed orientation in Spa.ce’ th? same for all CUbe?rom a cell theory of the solid and the dashed line is the behavior of
[parallgl hard CUbeSPHCS)_] [13]. K'rkp,a_ka [14] _Showed hard spheres with an effective volume of dydn the fluid phase.
that this model has a continuous transition to a simple hyper-
cubic solid structure in infinite dimensions and suggested
that this would also be so in three dimensions. The two mairhe total number of cube®, is pressure, an¥l is the volume
reasons to expect a continuous melting for PHCs are thef the system In the case of FRHCs, in addition to the
following. First, a cubic crystal lacks, in a Landau descrip-center-of-particle coordinates, three Euler angles are neces-
tion of its melting, a third-order term in the free energy func-sary to characterize the position of each cube. These angles
tional that would favor the transition to be first ordd5].  are updated at the same time as coordinates; the elemental
This kind of term appears for crystalline structures that poschange in each step is chosen tob6.1. Since there is no
sess three Bragg vecto3;, G,, Gj lying on the first configurational contribution to the energy of the system, the
maximum of the diffraction pattern and satisfying the rela-equation of state depends only on the relafid®. All re-
tion G,+G,+Gz=0. These vectors do not exist for a Sults are presented as a function of the adimensional tem-

simple cubic structure. In addition, bond-orientational orderPeratureT* =kgv, *(T/P) (which will be referred to simply
[16] will be strongly enhanced in PHCs compared, for in-as the temperatuyewherev,=12 is the volume of each cube
stance, to spheres because a fixed orientation of each cubk’.

favors a neighborhood in which cubes arrange with the same The zero-temperature state of the system of cubeth
orientation. This raises the possibility for the orientationalparallel and freely rotatingis highly degenerate because
order to persist up to higher temperatures than the transl@&long any of the main crystalline directions, rows of cubes
tional order. For comparison, the case of freely rotating har¢an be displaced an arbitrary amount without changing the
cubes(FRHC3 will also be studied and it will be shown that volume of the system. However, at finite temperatures the
in this case the melting is a usual first-order transition into arfubic configuration with long-range positional order has

FIG. 1. (a) Inverse packing fraction and(b) Bragg intensities

isotropic fluid. larger entropy than any row-displaced configuration and the
thermodynamically stable state is a simple cubic latti&.
Il. NUMERICAL TECHNIQUE AND RESULTS Even for the small systems that we are going to simulate, this

entropy is greater than the one that can be gained by displac-

The numerical method used to simulate the system is &ng rows of cubegwhich is of the order of In{)/N] and
standard Monte Carlo Metropolis algorithm in tNePT en-  configurations with displaced rows never show up in the
semble. The positions of the cubes are characterized by ttemulations in the temperature ranges of interest.
coordinates of their centers. A trial movement of a particle When temperature is increased sufficiently the crystal
consists of a displacement to a new position chosen rammelts. This melting is qualitatively different for PHCs and
domly inside a cube of linear size OlOg¢entered at the old FRHCs. In the case of FRHCs the melting occurs via a stan-
position ( is the linear size of the particlesThe new posi-  dard first order transition. The results of simulations are pre-
tion of the particle is accepted as long as there is no overlapented for a system of 125 particles. The system was initial-
with any other particle. After all particle coordinates are up-ized in a perfect cubic structure at low temperature and a
dated a trial global rescaling of all particle coordinates andsimulation was performed by increasing and then decreasing
system size by a factor within the range-0.01 is proposed. temperature. At each temperature 5000 Monte Carlo steps
If this change does not produce particle overlapping, then itvere used for thermalization and then 20 000 steps were
is accepted according to the Metropolis algorithm with anused to compute the guantities of interest. In Fig) Wve see
energy changeE given bydE=PAV—NkgTAV/V (N is the evolution of the inverse packing fractios=V/(Nuv) of
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the system. It shows a clear hysteretic behavior, indicating a 4 — T T T
first-order phase transition fol* ~0.15, where density
changes betweer 0.45 and~0.52. Also shown in this fig-
ure as a dotted line are the values predicted from a cell
theory for the solid 1], which gives a reasonable approxima-
tion to the real equation of state up to the melting tempera-
ture. It would be nice to have the expressions for the virial
coefficients of FRHCs to fit the fluid part of the curve, but
these are not available to the required order to get a good
fitting. For comparison, in Fig. 1 the Carnahan-Starling equa-
tion of state of hard spherd4] is shown. The only free
parameter is the sphere volume that was chosen to bg.1.2 ]

In Fig. 1(b) two different indicators of the order in the X200 o (b)
system support the conclusion that the melting transition of 02 * 04 0.6 = 8 1'0
FRHCs is first order. The parame®y is extracted from the ' ' o ' ’
diffraction pattern of the structure and it is defined as

FIG. 2. Same as Fig. 1 for a system 0£6x6 PHCs. In(a) the

4 dotted line is the prediction from a cell theory of the solid and the
B.= 2 ‘ f D(K,0,0)Y4m(6,¢) dashed line is the equation of state for PHC to seventh order virial
m=-—4 expansion.
2
X 8(k—k;)k?dk sin(6)d6 de| , (1) 1(a). Partial simulations in systems up to 512 particles were

performed and the results are consistent with a first-order
melting transition for FRHCs.

If the cubes are restricted to be parallel to each other, the
nature of the melting transition changes qualitatively. Results
_ _ X _ of simulations for this case are shown in Fig. 2 for a system
spherical harmonic¥/, , collect the part with cubic symme- ¢ 515 particles. The volume of the system does not show
try of the diffraction pattern. The value @, is different any abrupt change, but a continuous and reversineneat-
from zero if the system possesses long-range positional ordgfg and cooling behavior. The parameter characterizing the
[19]. . . . . . . crystalline orderB. diminishes strongly around™ =0.4,

The relative ordering of neighbor particl& is defined |, nere the system has a densit.5, suggesting a continu-
as ous melting. The local orientational ordésharacterized by
B,), in spite of decreasing near the transition, remains finite

at high temperatures. This characteristic is not surprising
BZ:m;4 f Da(r, 60,¢)K(r) since the orientational order is favored by the equal orienta-

tion of all cubes. In Fig. 2 we can see also the predictions for
the volume from the lowest-order cell model of the solid and
the seventh-order virial expansion for the fly20]. These
expressions give a good approximation to the simulated val-

with D,(r,8,¢) being the pair distribution function of par- ues for all temperatures.
ticles at distance, along the spatial directioné(¢). The If the melting of PHCs is really a second-order phase
kernelK(r) cuts off the integral beyond some distance. Thetransition, the behavior of the order parameter of the transi-
results are qualitatively insensitive to the exact form oftion (which can be taken to be the crystalline order parameter
K(r): in the results presented beldw(r) was taken to be 1 B.) must obey _scallng Iaws as a functlc_)n of the system size.
for r<1.5%%3and 0 forr>1.5%% The value ofB, is dif- In partu_:ular, dlfferleigt simulations dB, |n_system§ of dif-
ferent from zero if the system possesses long-range orientierent sized. (=V=/1) must obey a scaling relation of the
tional order. form [21]

All these indicators of ordering vanish at the melting tran- B . ekt Uy
sition, with the same hysteretic behavior as that of the vol- Be=L #f((T* =THL™), ©)
ume. The unambiguous determination of a first-order phase . ] . N
transition would require the study of the volume histogram atvhere f is a universal functiony and w are two critical
the transition temperature, which should have a double pea®Xponents, and7, is the thermodynamical melting tempera-
structure associated with the coexistence of a solid and #re. The exponent characterizes the divergence at the ther-
fluid phase. Unfortunately, the simulation of FRHCs is verymodynamic melting temperaturd}, of the correlation
time consuming so as to carry out this program. Partialength. The result of simulations for systems of 216, 512, and
checks were performed however. In a simulation around th&000 particles are shown in Fig. 3. The volume and the ori-
transition temperatureT(* =0.15) the volume of the system entational ordeB, show no detectable dependence on size,
stabilized around different values, depending on whether therhereas the crystalline ordBt, has a clear size dependence.
initial configuration of the system was chosen to be randonResults forB. for different system sizes can be collapsed
or ordered. These values were the ones expected from Figeasonably well onto a single curve when plottedals* vs

whereD(k, 6, ) is the intensity of the diffraction pattern in
polar coordinates, thé factor picks up the values at the first
maximum of the diffraction patternk¢=2mv'?), and the

4

2
XY4m(0,@)r?dr sin(6)de de| 2
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particles. The fluid phase of PHCs is the analogous of the
hexatic phase of the KTHNY theory. Within this framework,
the difference between FRHCs and PHCs is clear: Parallel
cubes keep the long-range orientational order even when po-
sitional order has been lost and the KTHNY theory predicts
a continuous melting if only positional order is lost. FRHCs
have the possibility of losing both positional and orienta-
tional order and this is in fact what happens at a unique
temperature in a discontinuous form.

It may be of interest to compare the fluid of PHCs with
the nematic phase of liquid crystdl22]. In that case, mol-
ecules orient along a preferred spatial directi@e., they
possess molecular-orientational ondedpon cooling, this
structure transforms usually into a smeddighase in which
a long-range positional order is established along the direc-
tion characterizing the nematic phase. This transition may be
first or second order depending on the material. At a lower
temperature the smectk-phase can undergo a transition to
a crystalline phase. In our case, parallel cubes single out
three orthogonal and equivalent directions in space and upon
cooling the system freezes into a solid phase, with crystalline
order in all directions. The melting of PHCs has no analog in
the transitions that occur in liquid crystal systems. Note that
for the case of cubes the oriented phase has to be stabilized
from the outside, whereas the nematic phase in liquid crys-

) ) T tals may be generated by molecular hard core interactions
-20 0 20 40 only.
(T"-0.40) LM

1. CONCLUSION
FIG. 3. (a) Inverse packing fractiow, (b) orientational order ) )
B,, and (c) crystalline orderB, as a function of temperature for In summary, | have shown numerical results on a simple

systems of PHCs of different sizes. The values shown correspond #@0del that displays a continuous melting transition in three

an average upon cooling and heating.(ti the curves of8, are ~ dimension, namely, a system of parallel hard cubes. The

scaled according to a second-order phase transition using the adnelting of this system can be qualitatively interpreted in

mensional linear size of the systdr= VY31, terms of the KTHNY theory of defect-mediated melting. The
melting temperature was estimated to BE=0.40+0.02

(T*=T*)LY, with the parametersT* =0.40+0.02, u and the critical_ density is _0.480.02. The critical exponent

= 4.0+ 0.5, andv=0.50+ 0.05. This value o is lower than of the correlation length i3»=0.50+=0.05. At the melting

the one corresponding to a three-dimensioxal model or transi.tion.o_nly positiongll order is lost; orientation.al order
the loop model for the normal-to-superconducting transitiorf 8Mains finite because it is favored by the geometric form of
(v=0.666+0.003) that is supposed to be in the same uniiN€ particles. If the cubes are allowed to rotate, the melting is
versality class of our model if the melting can be described® L_lsual first-order transition where both positional and orien-
by the KTHNY theory. However, to be able to unambigu-tat'on"jII order are lost.
ously decide this point, more simulations in larger systems
are needed. The density of the system at melting is 0.48
+0.02. | thank K. Hallberg and D. Domguez for a critical read-
The fluid formed by the parallel cubes above melting ising of the manuscript. This work was financially supported
not a usual isotropic fluid. This is obvious since some spatiaby Consejo Nacional de Investigaciones Cificais y Teni-
orientations are singled out by the particular form of thecas(CONICET), Argentina.
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